Thursday, June 20, 2019

Stitch formation/Thread tensions


 The interlacing of the threads itself, which constitutes the actual stitch formation, cannot be dissociated from the processes of material feeding and needle penetration. However, there are two variables directly linked to the thread that most intimately represent it: Thread tensions and thread consumption. The relationships between fabrics, machine set-up and stitch formation in lockstitch machines have already been studied in [9-15]. Methods for defect detection have been developed for overlock machines and presented in [3]. best sewing machine dealers in chennai. However, an automatic system for setting thread tensions online is still missing. Wang and Ma [15] describe thread tension control in embroidery machines, but the work only tackles the issues associated to the control of the actuator. Setting of the correct references for the controllers to produce a high-quality product in varying conditions is the key issue, and this has to be further tackled. 
juki usha singer merritt sewing machine price list showroom in chennai
This paper describes current work on the behavior of thread tensions in an industrial lockstitch sewing machine using a new measurement set-up. Methods previously investigated for monitoring of thread tensions and establishing the correct variable references are being ported and/or re-evaluated. The first step is the study of the relations between material properties and thread tensions. Some aspects are still not clear in this regard. In [13], for instance, the authors state that the thickness of fabric plies does not affect the needle thread tension. This is one of the aspects to be studied in this work.
An industrial PFAFF 1183 lockstitch (stitch 301 according to ISO 4915) machine has been instrumented with a thread tension sensor (Fig.2) connected to a signal conditioning circuit which in turn plugs to a National Instruments PCI-MIO16E-1 data acquisition board (although often called thread tension, the parameter measured is actually a thread pulling force). The machine’s “synchronizer” (a rotary optical encoder) provides 512 pulses per rotation of the machine, which is used as sample clock for signal acquisition. It is thus possible to determine the exact angle at which each signal sample is acquired, allowing relating the signal directly with the events during the stitch cycle. Signals are thus represented on a continuous angle rather than a time scale, in which the rotation N of the machine corresponds to the angles between 360º·(N-1) and 360º·N. The sensor (custom-designed by Petr Skop) is a cantilever beam with semiconductor strain gauges at the base, configured as a complete Wheatstone bridge. A glass sphere with a rounded slot allows a low-friction interface with the sewing thread. A thread guide with two ceramic O-rings has been designed to guide the thread around the thread sensor. The thread pulling force produces deformation on the cantilever sensor that is picked up by the strain gauges. Thread tension is imposed to sewing threads by a device called a tensioner (partially visible in Fig.2). This device consists of two disks between which the thread passes. A spring holds the two disks together. The pre-tension of this spring can be adjusted and is called in this context static thread tension.

No comments:

Post a Comment